

INVESTIGATION OF THE EFFECTS CAUSED BY THE INTRODUCTION OF THE
ENDOSYMBIONT *WOLBACHIA PPIENTIS* INTO *LUTZOMYIA LONGIPALPIS* AND THE
INFECTION OF THIS VECTOR BY *LEISHMANIA*

Izabella da Silva Mathias¹; Daniela da Silva Gonçalves²; Luciano Andrade Moreira²; Antônio Jorge Tempone¹; Yara Maria Traub-Cséko¹

1. Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro - RJ – Brazil.

2. Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou – Fiocruz, Belo Horizonte, Belo Horizonte, MG, Brazil.

Leishmaniasis, caused by *Leishmania* spp. and transmitted by sand flies, remains a major public health challenge. *Lutzomyia longipalpis* is the primary vector of visceral leishmaniasis in the Americas, and insecticide-based control strategies have shown limitations. *Wolbachia pipiensis*, an endosymbiont successfully used to control arboviruses in *Aedes aegypti*. This study evaluated the establishment of *Wolbachia* in *L. longipalpis* and its effects on *Leishmania infantum* infection. Our purpose in this work is to investigate the use of this endosymbiont in the control of leishmaniasis transmitted by sandflies. We tested the co-infection of sandflies with the bacteria through artificial blood feeding from Lulo embryonic cells previously stably infected with the wMelPop-CLA strain together with *L. infantum*, or only infected Lulo embryonic cells as control. A pool of 10 insects was collected for RNA extraction and cDNA synthesis, using RT-qPCR. We evaluated the permanence of the bacteria in the insect for up to 144 hours after infection, targeting the wsp gene of *Wolbachia*. We also verified that the presence of the bacteria showed a reduction in the parasite load in relation to the group without the endosymbiont, through the quantification of the *Leishmania* Actin gene. We also studied the expression of insect immune genes, and verified that the presence of the endosymbiont activated the Toll pathway, demonstrating that *Wolbachia* can modulate this immune pathway. To study the potential establishment of the endosymbiont in the sandfly, females were fed with cells transfected with *Wolbachia* and detection of the bacteria occurred for up to 10 days after feeding. We also evaluated the possibility of vertical transfer of *Wolbachia* and detected the bacteria in first generation male and female insects. Our findings suggest that *Wolbachia pipiensis* could be a promising tool for the biological control of *L. longipalpis*, contributing to new strategies for leishmaniasis prevention.

Supported by: PGBCM/IOC/Fiocruz.

Keywords: Vector control; *Lutzomyia longipalpis*; *Wolbachia pipiensis*.