

Neuroinflammatory and Cognitive Impacts of *Toxocara canis* Infection in a Murine Model

***ANDRESSA MARIANA SALDANHA-ELIAS¹, JORGE LUCAS NASCIMENTO SOUZA¹,
GETÚLIO MOTA E SILVA JUNIOR¹, ANA CLARA SANTANA DE SOUSA¹, ANA LAURA
GROSSI OLIVEIRA¹, GABRIELLA LUCIANA DE OLIVEIRA¹ ANTÔNIO CARLOS PINHEIRO
DE OLIVEIRA¹, RICARDO TOSHIO FUJIWARA¹, LUISA MOURÃO DIAS MAGALHÃES¹,
LILIAN LACERDA BUENO¹***

1.FEDERAL UNIVERSITY OF MINAS GERAIS, MINAS GERAIS, BRAZIL

Toxocara canis causes toxocariasis, a disease that primarily infects dogs. In paratenic host, such as humans and other animals the parasite does not complete its life cycle but instead undergoes larval migration, a condition known as “larva migrans”. The larvae migrate through various organs, including the brain. Here we sought to investigate how *T. canis* lodges in the central nervous system (CNS) of C57BL/6 mice infected with 1,000 larval eggs after 14 days post infection. We aimed to assess larval migration patterns, characterize neuroinflammatory responses using spectral flow cytometry, evaluate neurotrophic factor alterations by ELISA, and analyze behavioral changes. Larval recovery via the Baermann-Moraes method confirmed preferential brain lodging over the cerebellum. Neuroimmunological profiling using flow cytometry revealed significant systemic leukocytosis without peripheral cell activation but pronounced inflammatory infiltration in the CNS, predominantly by activated neutrophils and eosinophils. Microglial activation indicated a local inflammatory response to larval presence. Additionally, decreased CX3CL1 levels both systemically and in the brain, along with reduced GDNF in brain tissue, suggested impaired inflammatory regulation and neuroprotection. Infected mice also exhibited signs of memory deficit. Our findings suggest that infection with *T. canis* induced a disruption in neuroimmune homeostasis and impaired neuroprotection, which may contribute to the observed memory deficits. These results highlight the potential for lasting neurological consequences of *T. canis* infection and reinforce the need for further studies to elucidate its impact on brain function and behavior.

Supported by CAPES, CNPq, Fapemig.

Key-Words: *Toxocara canis*, Neuroinflammation, Neurotrophic factors