

Antischistosomal Activity of Sesquiterpene Polygodial from *Drimys brasiliensis*: *In Silico*, *In Vitro* and *In Vivo* Investigations

**RAYSSA A. CAJÁS¹, ERIC UMEHARA², THAINÁ R. TEIXEIRA¹, MONIQUE C. AMARO¹,
JOÃO HENRIQUE G. LAGO², JOSUÉ DE MORAES¹**

**¹RESEARCH CENTER ON NEGLECTED DISEASES, GUARULHOS UNIVERSITY,
GUARULHOS, SP, BRAZIL**

**²CENTER FOR NATURAL AND HUMAN SCIENCES, FEDERAL UNIVERSITY OF ABC,
SANTO ANDRÉ, SP, BRAZIL**

The World Health Organization highlights the urgent need for innovative therapeutic strategies to enhance helminthiasis control. In this context, Brazilian biodiversity represents a valuable source of bioactive molecules. This study employed bioactivity-guided fractionation of the hexane extract from *Drimys brasiliensis* (Winteraceae) branches, leading to the isolation and characterization of the sesquiterpene polygodial. The compound was then evaluated for its activity against *Schistosoma mansoni*, the causative agent of schistosomiasis. *In vitro*, polygodial exhibited significant potency against adult worms ($EC_{50} = 10 \mu M$) while showing no cytotoxicity in Vero cells ($CC_{50} > 200 \mu M$). *In silico* analyses revealed favorable pharmacokinetic properties (ADME) with no PAINS violations. *In vivo*, *S. mansoni*-infected mice treated with polygodial (400 mg/kg) showed a 44.0% reduction in worm burden, along with reductions of 71.8% in fecal egg excretion and 69.5% in intestinal egg load. These findings highlight polygodial as a promising lead compound for schistosomiasis treatment.

Supported by: CAPES and FAPESP.

Keywords: Anti-*Schistosoma*; Natural product; *Drimys brasiliensis*; *Schistosoma*; Anthelmintic.