

PARASITO2025

29º CONGRESSO BRASILEIRO DE PARASITOLOGIA

The Impact of the *lpg2* Gene on *Leishmania amazonensis* Infection in Macrophages

ASTRID MADELEINE CALERO GOICOCHEA¹; JÚLIA ALVES DE SANTANA¹; FLÁVIO HENRIQUE DE JESUS SANTOS¹; MARIA EDUARDA DOS SANTOS MONTEIRO SOUZA²; ELISE EDUARDA DOS SANTOS BRITO²; CARLA POLYANA O. S. BERNARDES¹; YASMIN MONARA FERREIRA DE SOUSA ANDRADE³; LEONARDO PAIVA FARIAS³; JULIANA PERRONE BEZERRA DE MENEZES

1. UNIVERSIDADE FEDERAL DA BAHIA (UFBA) / FIOCRUZ BA, SALVADOR - BA - BRASIL; 2. ESCOLA BAHIANA DE MEDICINA E SAÚDE PÚBLICA / FIOCRUZ BA, SALVADOR - BA - BRASIL; 3. FIOCRUZ BA, SALVADOR - BA - BRASIL.

Abstract

INTRODUCTION: Leishmaniasis, caused by the protozoan *Leishmania*, is a significant global health problem. In Brazil, *Leishmania amazonensis* is responsible for two clinical forms: Localized Cutaneous Leishmaniasis (LCL) and Diffuse Cutaneous Leishmaniasis (DCL). Macrophages play a crucial role in the immune response during *Leishmania* infection. Among the glycoconjugates on promastigote parasites surface are lipophosphoglycan (LPG), phosphoglycans (PG), proteophosphoglycans (PPG), and acid phosphatases (sAP). The *lpg2* gene encodes a GDP-mannose transporter, crucial for the synthesis of phosphoglycan (PG), a common domain for the surface molecules of these parasites. The research group used CRISPR/Cas9 to develop *Leishmania amazonensis* parasites deficient in *lpg2*. **OBJECTIVES:** This study aims to explore the inflammatory mechanisms triggered by the deletion of the *L. amazonensis* *lpg2* gene during the infection of murine macrophages. **METHODS:** Macrophages from C57BL/6 mice were cultured and infected with wildtype (WT) *L. amazonensis* promastigotes and *lpg2* knockout ($\Delta lpg2$) promastigotes. Infection ratios of 1:5 and 1:10 were used, and parasite load and viability were assessed. The culture supernatant was then analyzed using the Griess Reaction to detect nitric oxide (NO) and inflammatory mediators using ELISA. **RESULTS:** We observed a reduction in intracellular parasite load and viability of $\Delta lpg2$ knockout parasites compared to WT parasites at both ratios tested. However, nitric oxide (NO) levels did not differ significantly between the two groups of parasites. Further assessment of cytokines, lipid mediators (PGE₂ and LTB₄) is necessary in this context. **CONCLUSION:** The study highlights the significance of PG-containing glycoconjugates as virulence factors in *L. amazonensis*. These initial findings hold promise for enhancing our understanding of inflammatory mechanisms during parasite-macrophage interactions in New World *Leishmania* species.

Keywords: Macrophage. *Leishmania amazonensis*. *lpg2*

Supported by: Fundação Oswaldo Cruz- Fiocruz: 25383.000012/2024-93 / Brazilian National Research Council (CNPq): 310137 / 2022-5

 (11) 93232-3976

 www.parasito2025.com

 info@parasito2025.com

60SBP
ANOS
SOCIEDADE BRASILEIRA DE PARASITOLOGIA

SOCIEDADE TÉCNICO CIENTÍFICA BRASILEIRA DE PARASITOLOGIA (SBP) – CNPJ: 05.000.796/0001-04
Rua 235, N° 115, Quadra 62, Setor Leste Universitário, Goiânia, GO - CEP: 74.605-050