

FROM RESISTANCE TO RESURGENCE: HOW *LEISHMANIA INFANTUM* RECLAIMS ITS FITNESS AND METABOLIC EDGE AFTER ANTIMONY WITHDRAWAL

ANA VICTORIA IBARRA-MENESES¹, **SIMON HAENTJENS**¹, **JESUS D. CASTANO**², **FRANCIS BEAUDRY**², **CHRISTOPHER FERNANDEZ-PRADA**¹

¹DEPARTMENT OF PATHOLOGY AND MICROBIOLOGY, FACULTY OF VETERINARY MEDICINE, UNIVERSITÉ DE MONTRÉAL; THE RESEARCH GROUP ON INFECTIOUS DISEASES IN PRODUCTION ANIMALS (GREMIP), FACULTY OF VETERINARY MEDICINE, UNIVERSITÉ DE MONTRÉAL, SAINT-HYACINTHE, CANADA.

²DEPARTEMENT OF BIOMEDECINE, FACULTY OF VETERINARY MEDECINE, UNIVERSITÉ DE MONTRÉAL, SAINT-HYACINTHE, QUÉBEC, CANADA

Leishmaniasis, caused by the protozoan parasite *Leishmania*, continues to pose a major public health problem worldwide. Phenotypic shifts in this parasite related to genome plasticity contribute to resistance and complicate treatment. This study investigates the fitness cost of antimony resistance in *Leishmania infantum*. Ten Sb^{III}-resistant clones were cultured under Sb^{III}-free conditions for 18 passages, with most regaining sensitivity as indicated by their IC₅₀ values. This resensitization was linked to decreased amplification of the *mrpA* gene, a key factor in resistance. Drug assays revealed the emergence of miltefosine resistance but not amphotericin B resistance after Sb^{III} removal. Resensitized clones exhibited significantly higher growth rates than resistant clones after eight drug-free passages, suggesting a fitness cost of resistance. Oxygen consumption assays showed increased O₂ consumption between passages P3 and P8, followed by a decrease after P8, indicating metabolic adaptations. Infection assays with bone marrow-derived macrophages showed reduced infectivity as the clones regained sensitivity, potentially linked to increased metacyclic differentiation, suggesting a trade-off between drug resistance and infectivity. Additionally, a significant decrease in MRP-A protein abundance was observed, with increases in AQP1, tryparedoxin, HSP70, PCNA, and tyrosine phosphatase at different time points. These changes indicate dynamic reprogramming of protein expression with the reversal of resistance. Our findings suggest that antimony resistance in *L. infantum* imposes a fitness cost, driven by genomic and proteomic adaptations that influence metabolism and infectivity. A comprehensive understanding of these mechanisms is essential for the development of effective strategies to manage drug-resistant *Leishmania* populations and improve relapse therapies.

Support by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-2024-04103 to CFP) and by the Canada Foundation for Innovation (grant no. 37324 and 38858 to CFP).

Keywords: *Leishmania*, drug-resistant, resensitization