

ABSTRACT – PARASITO 2025

THERAPEUTIC POTENTIAL OF EXTRACELLULAR VESICLES FROM MESENCHYMAL STEM CELLS IN CUTANEOUS LEISHMANIASIS

Pedro Brito Borba¹, Caio Marques Landeiro Torres¹, Maria Vitória Mota da Costa¹,
Yasmin da Silva Luz¹, Juliana Perrone Bezerra de Menezes¹, Zaquer Costa-Ferro^{1, 2, 3},
Bruno Solano de Freitas Souza^{1, 2, 3}, Julio César Queiroz Figueiredo^{1, 2, 3}, Erick Correia
Loiola^{1, 2, 3}, Camila I. de Oliveira^{1, 4}

1 - Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia, Brazil

2 - Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia, Brazil

3 - D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil

4 - INCT—Instituto de Investigação em Doenças Tropicais, Bahia, Brazil

Cutaneous leishmaniasis (CL), caused by *Leishmania braziliensis*, is characterized by chronic ulcers and intense inflammation. Current treatments have limitations, including severe side effects and increasing parasite resistance. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells (HuMSCs-EVs) offer immunomodulatory and regenerative potential, raising the possibility of using them in a combination treatment with Meglumine Antimoniate, the standard chemotherapy. We propose that HuMSC-EVs can regulate the overt immune response associated with CL pathogenesis and facilitate wound healing. To this end, we investigated the effects of exposure of *L. braziliensis*-infected macrophages to HuMSCs-EVs and their wound healing potential. BMDM infected with *L. braziliensis* and exposed to HuMSCs-EVs showed reduced infection rates, decreased parasite load (39% vs 23%), and a shift toward the anti-inflammatory M2 phenotype. *In vitro* cytokine analysis revealed increased levels of TNF- α , IL-10 and IL-1 β , highlighting the immunomodulatory role of EVs. In keratinocyte wound-healing assays, HuMSCs-EV accelerated closure rates and promoted cell migration at different time points. Employing a pre-clinical model of CL, BALB/c mice infected with *L. braziliensis* and treated with HuMSCs-EV (applied intravenously) displayed smaller lesions without significant changes in parasite burden. These results indicate that HuMSC-EV promotes immune regulation and tissue repair, presenting a novel therapeutic approach for CL.

Supported by: INOVA Fiocruz

Key Words: Cutaneous leishmaniasis, Extracellular vesicles, Immunomodulatory