

PARASITO2025

29th BRAZILIAN CONGRESS OF PARASITOLOGY

SYNERGISTIC STRIKES: A PROMISING RATIONAL DRUG COMBINATION AGAINST *Leishmania amazonensis* AMASTIGOTES

DEYVISON RHUAN VASCO-DOS-SANTOS¹, LUDMILA FERREIRA DE ALMEIDA FIUZA², ZÉNIS NOVAIS DA ROCHA³, MARIA DE NAZARÉ CORREIA SOEIRO², EDUARDO CAIO TORRES-SANTOS⁴, MARCOS ANDRÉ VANNIER-SANTOS¹

¹LABORATÓRIO DE INOVAÇÃO EM TERAPIAS, ENSINO E BIOPRODUTOS, INSTITUTO OSWALDO CRUZ, RIO DE JANEIRO, RJ, BRAZIL, ²LABORATÓRIO DE BIOLOGIA CELULAR, INSTITUTO OSWALDO CRUZ, RIO DE JANEIRO, RJ, BRAZIL, ³INSTITUTO DE QUÍMICA, UNIVERSIDADE FEDERAL DA BAHIA, SALVADOR, BA, BRAZIL, ⁴LABORATÓRIO DE BIOQUÍMICA DE TRIPANOSOMATÍDEO, INSTITUTO OSWALDO CRUZ, RIO DE JANEIRO, RJ BRAZIL

Drug combinations offer a strategic approach to cutaneous leishmaniasis treatment by targeting multiple pathways to enhance efficacy and selectivity while reducing toxicity and resistance. Here, we evaluated the *in vitro* activity of POD-1 combined with MB, NMB, and its derivates, NMB-B and NMB-P (under patent secrecy) against *ex vivo* amastigotes of *Leishmania amazonensis* (LTB0016 strain, 10⁶ parasites/mL) searching for synergistic effects. Assays began from the IC_{25,50,75} values of isolated compounds, followed by 24-hour exposures to fixed-ratio combinations (4:1; 3:2, 2:3, and 1:4) to determine the ICs within the combinations. FIC at 25%, 50%, and 75% were calculated, along with their mean sums ($\bar{x}\Sigma FIC_{25, 50, \text{ and } 75}$), to classify interactions as synergistic (≤ 0.5), additive (> 0.5 and ≤ 4.0), or antagonistic (> 4.0). All combinations exhibited dose-dependent efficacy, with 81% inducing $> 80\%$ mortality and 50% reaching complete inhibition at maximum concentrations. ICs values decreased up to 26-fold compared to isolated compounds, with $90\% \leq 5 \mu\text{M}$, 71% submicromolar, and 13% nanomolar. POD-1:NAM-P showed ICs of 0.02 μM for POD-1 (1:4 ratio) and 0.04 μM for NMB-P (4:1 ratio). Combinations significantly reduced POD-1's IC₇₅ ($p < 0.05$). FIC analysis indicated 60% synergy, 40% additive effect, and no antagonistic, with POD-1:NMB-P exhibiting 92% synergy, including FIC values $< 0.1 \mu\text{M}$, a pattern also observed for POD-1:MB and POD-1:NMB. The $\bar{x}\Sigma FIC$ revealed 58% synergistic combinations, 42% additive, and no antagonism, highlighting POD-1:NMB-P (67% synergy), similar to POD-1:NMB. Results underscore the potential of synergistic combinations, especially POD-1:NMB-P, to enhance efficacy at nanomolar concentrations against clinically relevant *Leishmania* form, supporting further investigations.

Supported by: CNPq, CAPES, FAPERJ, PROGRAMA INOVA FIOCRUZ

Keywords: cutaneous leishmaniasis; drug repurposing; synergistic leishmanicidal effects