

HOTSPOT MAPPING AND THERMOSTABILITY ANALYSIS OF 17-DMAG BINDING TO *LEISHMANIA BRAZILIENSIS* HSP83

Thamires Quadros Froes¹, Thalita Carolyne Souza Trindade¹, Julio Cesar Borges³, Deborah B. M. Fraga^{1,3}, Cláudia I. Brodskyn¹, Juliana P. B. de_Menezes^{1,3}, Patrícia Sampaio Tavares Veras^{1,3}

1. Laboratory of Host-Parasite Interaction and Epidemiology (LaPHE) – Gonçalo Moniz Institute – Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil;
2. São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Paulo, Brazil;
3. National Institute of Science and Technology of Tropical Diseases (INCT-DT) - National Council for Scientific and Technological Development (CNPq).

Introduction: Previously, we have shown that human molecular chaperone heat shock protein 90 (*HsHsp90*) inhibitors, including 17-DMAG, exhibit both *in vitro* and *in vivo* leishmanicidal activity. It is reasonable to assume that 17-DMAG exerts its effects by inhibiting the parasite's Hsp (Hsp83), a key regulator of phase transitions in its life cycle. However, direct experimental evidence supporting this hypothesis is still lacking. This knowledge gap hinders the molecular simplification of 17-DMAG to reduce synthesis costs, limits the evaluation of critical hotspot residues (e.g., Asp90 in *HsHsp90*), and the efforts to enhance its selectivity profile. **Hypothesis:** Evolutionary constraints have differently shaped the hotspot regions of *HsHsp90* and *L. braziliensis* Hsp83 (*LbHsp83*). **Objective:** To confirm that 17-DMAG binds to *LbHsp83* and to identify key hotspot residues involved in this interaction. **Methods:** Hotspot analysis was performed using the DRUGpy plugin along with FTmap and e-FTmap servers. Recombinant N-terminal *L. braziliensis* Hsp83 was expressed, purified via chromatographic methods, and analyzed in differential scanning fluorescence assays in the presence or absence of 17-DMAG. **Results:** The binding of 17-DMAG to *LbHsp83* was confirmed by its large increase in melting temperature ($\Delta T_m = 10.4^\circ\text{C}$) upon 17-DMAG addition (500 μM), which was consistent with high-affinity binding, further validated by concentration-response assays ($K_d = 0.32\mu\text{M}$). After establishing *LbHsp83* as the molecular target of 17-DMAG, the hotspot profiles of *HsHsp90* and *L. major* Hsp83 (*LmHsp83*), the closest homolog with 3D structure available were compared. The analysis revealed differences in hotspot strength (*druggable* vs. *borderline-druggable*), suggesting that inhibiting *LmHsp83* may be more challenging than targeting *HsHsp90*. Additionally, this analysis shows a fraction of the *LmHsp83* hotspot remained unoccupied by 17-DMAG, indicating potential for affinity enhancement. A comparison of atomic consensus sites from these structures highlighted that fine-tuning apolar and hydrogen donor interactions is crucial for designing selective inhibitors. **Conclusion:** Identifying *LbHsp83* as the molecular target of 17-DMAG was paramount to carrying out hotspot analysis that offers valuable insights to guide potency and affinity optimization.

Supported by: Coordination for the Improvement of Higher Education Personnel (CAPES) (88887.883492/2023-00); National Council for Scientific Research and Development (CNPq) (401033/2023-6); Foundation for the Support of Research in the State of Bahia (FAPESB) (00081555367) (INCT-DT-465229/2014-0); INOVA Program – Fiocruz (79700287000).

Keywords: *Leishmania braziliensis*, Heat Shock Proteins (HSP), 17-DMAG, hotspot analysis, DSF

(11) 93232-3976

www.parasito2025.com

info@parasito2025.com

60 SBP
ANOS
SOCIEDADE BRASILEIRA DE PARASITOLOGIA