

PARASITO2025

29º CONGRESSO BRASILEIRO DE PARASITOLOGIA

Evaluation of the *Ipg2* gene during *Leishmania infantum* and host cell interaction

MARIA EDUARDA DOS SANTOS MONTEIRO SOUZA; ASTRID MADELEINE CALERO GOICOCHEA¹; JÚLIA ALVES DE SANTANA¹; FLÁVIO HENRIQUE DE JESUS SANTOS¹; ELISE EDUARDA DOS SANTOS BRITO²; YASMIN MONARA FERREIRA DE SOUSA ANDRADE³; LEONARDO PAIVA FARIAS³; VALÉRIA M BORGES³.

1. UNIVERSIDADE FEDERAL DA BAHIA (UFBA) / FIOCRUZ BA, SALVADOR - BA - BRASIL; 2. ESCOLA BAHIANA DE MEDICINA E SAÚDE PÚBLICA / FIOCRUZ BA, SALVADOR - BA - BRASIL; 3. FIOCRUZ BA, SALVADOR - BA - BRASIL.

Abstract

INTRODUCTION: Visceral leishmaniasis is considered very severe, with high mortality rates when not treated properly. Is characterized by hepatosplenomegaly and caused by the species *Leishmania infantum* in Brazil. The promastigote form of the parasite has molecules in their surface important for the host infection, the most abundant one is the Lipophosphoglycan (LPG). The *L. infantum* promastigote also has other phosphoglycans on its surface. In response to these virulence factors, macrophages activate their microbicidal mechanisms to combat *L. infantum* infection. In this context, parasites LPG deficient, obtained by the CRISPR/Cas9 system, represent an efficient tool to evaluate the parasite-host cell interaction. **OBJECTIVES:** This study aims to investigate how the presence or absence of *Ipg2* can alter the microbicidal functions of murine macrophages during infection by comparing *L. infantum* wild-type (WT), *L. infantum* knockout (Δ *Ipg2*), with the deletion of the *Ipg2* gene and the *L. infantum* genetically restored Add-back (Δ *Ipg2* + *Ipg2*). **METHODS:** Macrophages derived from the bone marrow of C57BL/6 mice were cultured and subsequently infected with *L. infantum* WT, Δ *Ipg2* and Δ *Ipg2* + *Ipg2* metacyclic promastigotes. After 4, 48 and 72 hours of infection the parasite load and viability were evaluated. The culture supernatant was collected to detect nitric oxide and inflammatory mediators. **RESULTS:** We observed a reduction in the Δ *Ipg2* parasites survival compared to WT parasites. Furthermore, macrophages infected with the *L. infantum* Δ *Ipg2* had a significant increase in nitrite production compared to the WT and Δ *Ipg2* + *Ipg2* groups, suggesting a greater microbicidal potential of macrophages infected by the Δ *Ipg2*. **CONCLUSION:** *L. infantum* Δ *Ipg2* parasites have lower virulence and stimulate a stronger macrophage response, highlighting LPG's role as a key virulence factor. Further research is needed to understand the inflammatory mechanisms and the role of LPG2 in macrophage activation.

Keywords: Macrophage. *Leishmania infantum*. *Ipg2*

Supported by: Fundação Oswaldo Cruz- Fiocruz: 25383.000012/2024-93 / Brazilian National Research Council (CNPq): 310137 / 2022-5

 (11) 93232-3976

 www.parasito2025.com

 info@parasito2025.com

60SBP
ANOS
SOCIEDADE BRASILEIRA DE PARASITOLOGIA

SOCIEDADE TÉCNICO CIENTÍFICA BRASILEIRA DE PARASITOLOGIA (SBP) – CNPJ: 05.000.796/0001-04
Rua 235, N° 115, Quadra 62, Setor Leste Universitário, Goiânia, GO - CEP: 74.605-050