

IN SILICO AND TRANSCRIPTIONAL ANALYSIS OF GENES THAT ENCODE ENZYMES
RELATED TO EICOSANOID METABOLISM OF *LEISHMANIA* spp

BEATRIZ LORRANY DE ARAÚJO CARVALHO¹, MATHEUS OLIVEIRA SOUSA¹, YASMIN
MONARA FERREIRA DE SOUSA ANDRADE¹, THÉO ARAÚJO-SANTOS^{1,2,3}

¹LABORATÓRIO DE AGENTES INFECIOSOS E VETORES (LAIVE), CENTRO DAS CIÊNCIAS
BIOLÓGICAS E DA SAÚDE (CCBS), UNIVERSIDADE FEDERAL DO OESTE DA BAHIA (UFOB),
BAHIA, BRASIL.

²PROGRAMA MULTICÊNTRICO DE BIOQUÍMICA E BIOLOGIA MOLECULAR (PMBqBM),
CENTRO DAS CIÊNCIAS BIOLÓGICAS E DA SAÚDE (CCBS), UNIVERSIDADE FEDERAL DO
OESTE DA BAHIA (UFOB), BAHIA, BRASIL.

³PROGRAMA PÓS-GRADUAÇÃO EM PATOLOGIA INVESTIGATIVA (PPGPI), CENTRO DAS
CIÊNCIAS BIOLÓGICAS E DA SAÚDE (CCBS), UNIVERSIDADE FEDERAL DO OESTE DA
BAHIA (UFOB), BAHIA, BRASIL.

Parasites of the *Leishmania* genus can synthesize eicosanoids, once they possess enzymes related to their metabolism. In turn, eicosanoids are bioactive lipids capable of controlling inflammatory response in vertebrate hosts. Recently, it was demonstrated that the profile of eicosanoids produced by *Leishmania* varies according to the parasite species and the clinical condition of the leishmaniasis associated with the disease. Herein, we analyzed the differences in the genes involved in eicosanoid metabolism, as well as the alterations in the proteins encoded by these, such as prostaglandin F synthase (PGFS) and cytochrome p450 oxidase 1 (CYP1). For this, we analyzed *in silico* the genes associated with the metabolism of eicosanoids in *Leishmania* spp by means of bioinformatics tools, such as: alignment, phylogenetic analysis of the two identified genes, modeling of proteins encoded by them, and structural alignment of proteins aimed at identifying polymorphisms in regions of interest. We also carried out the development of pairs of primers to subsequently carry out a comparative evaluation of genetic expression by means of the RT-qPCR technique in the different species of *Leishmania*. A reduction was observed in the levels of genetic expression of *cyp1* in *L. braziliensis* compared to *L. infantum* and *L. amazonensis*. Regarding the expression of *pgfs*, no significant differences in gene expression were observed between the *Leishmania* species studied. Furthermore, we identified that the same mutations in the genes and proteins are conserved in *Leishmania* species related with similar clinical forms of leishmaniasis. Then, the data indicate differences of *cyp1* expression between *Leishmania* species, which can be related to virulence during host-pathogen interactions to be investigated in the next studies.

Supported by: UFOB.

Keywords: *cyp1*, *pgfs*, *Leishmania*.